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Exercise 2.1 Number of Edges and Subgraphs.

Answer the following questions and justify your answers with a brief explanation.

1. How many edges does an undirected graph of n vertices maximally contain? How many edges
does a directed graph of n vertices maximally contain? (In both cases, assume that the graph does
not contain loops.)

2. What is the maximum number of edges in an undirected k-partite graph with n =
∑k

i=1 uk
vertices, where ui > 0 is the number of vertices in the i-th subset of this partition?

3. Given an undirected clique G of size n, where n is an odd prime number. How many pairwise
edge-disjoint simple cycles (i.e. cycles that use every vertex at most once) of length n does G
contain?

Exercise 2.2 Topological Sorting (1 point).

1. How many topological orders does the following graph contain? List all topological orders.
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2. Consider now the following graph G = (V,E) and �nd a set E′ ⊂ E of minimum cardinali-
ty, such that G′ = (V,E \ E′) can be topologically sorted. Justify your answer (i.e., why is it
necessary to remove at least |E′| edges?).
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3. What is the maximum number of edges in a directed graph that can be topologically sorted?
Formulate your claim for every positive integer n and prove your claim by using induction.

Hint: For each n ∈ {1, 2, 3, 4} construct a graph with n vertices that is topologically sortable and
contains the maximum number of edges. �en use these observations to derive your claim.)

Exercise 2.3 Number of Edges and Connected Components.

1. Prove via mathematical induction that a connected graph with n > 0 vertices has at least n− 1
edges.

2. Prove that a graph G with n vertices andm connected components has at least n−m edges.

Recall that an undirected acyclic graph is called a forest. It is easy to see that a graphG is a forest
i� each connected component of G a is a tree.

3. Prove that a forest G with n vertices andm connected components has n−m edges.

4. Prove that if a graph G with n vertices and m connected components has n −m edges, then G
is a forest.

Exercise 2.4 Hamiltonian paths in directed acyclic graphs (2 points).

A Hamiltonian path in a (directed or undirected) graph G is a path in G that visits each vertex of G
exactly once. It is known that a problem of �nding a Hamiltonian path in a graph is NP-hard, which
means that it is highly unlikely that this problem can be solved in polynomial time. However, for special
types of graphs it is possible to solve this problem e�ciently.

For directed acyclic graphs one can �nd a Hamiltonian path using topological sorting. To show this,
answer the following questions about topological orderings and Hamiltonian paths:

1. LetG be a directed acyclic graphwhich has a Hamiltonian path.What is the relationship between
the set of Hamiltonian paths and the set of topological orderings ofG?What are the sizes of these
sets?

2. Let G be a directed acyclic graph with no Hamiltonian paths. Can G have a unique topological
ordering?

Exercise 2.5 Eulerian tours.

An Eulerian tour is a closed walk (Zyklus) that visits every edge exactly once.

In this exercise, we ask you to prove that a connected graph contains an Eulerian tour if and only if it
does not contain a vertex of odd degree.
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1. Prove that if a connected graphG contains an Eulerian tour, thenG does not contain a vertex of
odd degree.

2. Prove that every connected graph without vertices of odd degree contains a Eulerian tour. Use
mathematical induction on the number of edges.

Hint: Use the fact that every non-trivial connected graph without vertices of odd degree contains
a cycle. Notice that this fact is a direct consequence of the fact that every non-trivial acyclic graph
contains a leaf (which you proved in the previous exercise sheet).

Submission: On Monday, 8.10.2018, hand in your solution to your TA before the exercise class starts.
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